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Remarks on transition in a round tube 

By A. M. 0. SMITH 
Douglas Aircraft Company Inc., El Segundo, California 

(Received 29 July 1959) 

This article has a twofold purpose: (1) to analyse the available theoretical and 
experimental knowledge concerning flow in the inlet region of a smooth round 
tube, and (2) to point out that the e9 amplification factor method apparently 
predicts natural transition correctly over a significant fraction of the entire inlet 
length of the tube. The successful prediction indicates, but does not prove, that 
flow in a smooth round tube becomes turbulent a t  higher Reynolds numbers 
because transition occurs in the inlet length-not in the fully developed Poiseuille 
rbgime. The close agreement between theory and a test result obtained by Pfen- 
ninger indicates that the e9 method is valid for a wide variety of flows having 
x Reynolds numbers of transition ranging from 570,000 to 40 million. The results 
are applicable to both plane and axially symmetric flows. 

1. Introduction 
In 1956 Smith & Gamberoni showed by analysis of a large number of experi- 

ments that boundary-layer transition will occur when Tollmien-Schlichting 
waves reach an apparent amplification ratio of about e9. One experiment, not 
treated in the original work, was that performed by Pfenninger (1950, 1951 a, b)  
at the Northrop Aircraft Co., in which he carefully measured the transition point 
in a long (59 ft.) tube of 2 in. diameter containing a flow with very low turbulence. 
This type of test is of particular interest because the problem of transition in 
a round tube has been paradoxical for many years. Theory predicts that fully 
developed parabolic flow is stable with respect to small rotationally symmetric 
disturbances at  all Reynolds numbers; yet the flow is known to become turbulent 
at rather low values of the Reynolds number. The reasons Pfenninger’s tube-test 
was not included in the original study were two: (1) the flow was not of a boundary- 
layer type except very near the entrance, and (2) no amplification rate chart 
applicable to this kind of flow was in existence. Subsequently, efforts have been 
made to analyse the flow, and several observations concerning the state of 
knowledge about this problem were made that are believed to be of general 
interest. This paper then has a twofold purpose: to report that the e9 factor does 
seem to hold for the tube flow studied and, secondly, to call attention to and 
discuss the unsatisfactory state of knowledge concerning this classical yet still 
paradoxical flow problem. 

2. Experimental data 
Many tests have been made to learn the tube Reynolds number Rd = a d / v  

(0 = mean velocity, d = diameter, v = kinematic viscosity) at which the flow 
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becomes turbulent; for example, see Goldstein (1938), Schlichting (1955), or 
Prandtl & Tietjens (1934). Yet very little study has been made of the nature of 
the flow in the initial portion of the tube, the inlet length, and one wishing to 
study the problem in detail will find that a complete set of reliable test data does 
not exist. Three of the principal sets of data will be mentioned here. One is due 
to Nikuradse (see Prandtl & Tietjens 1934). It is complete in a static sense, 
consisting of a full set of velocity profiles covering the entire inlet length. 
However, all the results are presented in two small graphs with neither explana- 
tion nor description of the test apparatus. Therefore the data have a low degree of 
accuracy, if for no other reason than the small size of the figures. 

Another set is Pfenninger’s data. In  this case great care was used in taking 
measurements, the apparatus was very good, and the scale was large. Neverthe- 
less, the data are not entirely satisfactory, because the tests were in the nature of 
spot checks rather than a complete, systematic survey. For example, transition 
location is reported only for one tube Reynolds number. No curve of R, (the 
Reynolds number based on 2) for transition versus Rd is given. Several velocity 
profiles were measured, but these were taken under different conditions and in 
slightly different apparatus from those for which the transition measurement was 
made. In  addition, the Northrop data cover only a small fraction of the entire 
inlet length . 

Recently a third set of data have become available: the results of tests run by 
Reshotko (1958) in an extremely fine experimental arrangement located under- 
ground in a nearly isothermal environment. But again the data cannot be called 
complete. The purpose of the tests was to study the stability of fully developed 
Poiseuille flow. Consequently, only the downstream portions of the inlet region 
were measured, and the Reynolds number could not be increased sufficiently to 
induce transition in the inlet length. (Another experimental investigation has 
been performed by Leite (1959), its purpose and interest being quite similar to 
Reshotko’s. However, his data will not be cited here, because Reshotko’s appara- 
tus was considerably superior, and because Leite covered only the fully developed 
flow r6gime. Nevertheless, his results supply a great deal of information on the 
stability of fully developed flow.) 

Figure 1 compares transverse velocity profiles according to Nikuradse, 
Pfenninger and Reshotko. In  order to prepare this figure, it  was first necessary to 
cross-plot Pfenninger’s and Reshotko’s results after the fashion of figure 13 of 
Prandtl & Tietjens (1934). The profiles so found are seen to have none too good 
agreement, differing by as much as 9 yo at the centre. Notice also that Pfennin- 
ger’s data cover only the first part of the inlet length, whereas Reshotko’s cover 
only the last part; and since there is no overlap, they cannot be compared 
directly. The entire length corresponds to a value of x/uRa of about 0.26. (Because 
xluRa has been the most common length parameter in the past, it is used here: Ba 
is the tube Reynolds number oalv,  where u is the radius-not the diameter-and 
U is the mean velocity.) The question of whether the differences are attributable 
to graph-reading accuracy, experimental accuracy, differences in entrance condi- 
tions, or other factors cannot be answered. Some of the same data are shown in 
8 different and perhaps clearer fashion in figure 2. In  figure 3 the core velocities 
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V, are compared. Again, Nikuradse’s and Pfenninger’s data are seen to be in 
only fair agreement. Reshotko’s data are mostly in good agreement with 
Nikuradse’s, but they too fail to overlap Pfenninger’s. This figure shows clearly 
that Pfenninger’s tests covered only a small fraction of the entire inlet length. 

In summary, only three sets of detailed measurements of mean velocities exist. 
One, Nikuradse’s, is complete but of uncertain accuracy; the other two are of 
good accuracy but incomplete for the present interest. 
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FIGURE 1. Measured and calculated laminar velocity profiles at several positions in the 
inlet portion of a round tube. Experimental: - 0- 0- 0, Nikuradse; - 0- 0- 0 ,  
Pfenninger (1951 a, Fig. 3) ; - A- A- A, Reshotko. Theoretical: - - - - , Lang- 
haw; - - -, Punnis; - - - - -, Tatsumi. 

3. Recent theoretical studies 
Between theory (Lin 1955; Corcos & Sellars 1959) and experiment (Leite 1959), 

it has become fairly well established that the asymptotic (parabolic) flow in 
a round tube is stable to rotationally symmetric small disturbances at all Rey- 
nolds numbers. Consequently, if stability theory is to explain natural transition 
for flow of low turbulence in a smooth round tube, it must explain it either by 
consideration of the inlet region alone or else by consideration of disturbances 
that lack rotational symmetry, in which case the Poiseuille regime may also enter 
the picture. Since it is known that transition can occur in the inlet length, recent 
efforts at  explanation have dealt with flow in this portion. 

In order to apply stability theory, accurate primary velocity profiles must be 
available. The other results of the older theoretical attempts (Goldstein 1938) to 
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FIGURE 2. Comparison of measured velocity profiles with calculations by Falkner-Skan 
piecewise method. -0-0-0, Pfenninger (1951a, Fig. 3); - O - ~ - ~ ,  Nikuradse; 
-A- A- A ,  Reshotko. 
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FIGURE 3. Comparison of several measured and caIculated values of velocity in the core of 
a round tube. - 0--, Nikuradse; - 0--, Pfenninger (1951 b, Fig. 5, Ul, ,, = 26.28 m/s). 
6, Ra=2050, A R,=3800, h R,= 18,000, Reshotko. - - - - -, Tatsumi; - -  -, Punnis; 
--- , Langhaar. 
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h d  them are unsuitable, and we shall consider only the three most recent 
attempts to solve the problem. Those to be considered are by Langhaar (1942)) 
Tatsumi (1952), and Punnis (1947). Results of these attempts are presented in 
figures 1 and 3. It is seen that the theoretical values are not only in disagreement 
among themselves but also in disagreement with the two sets of experimental 
results. For many purposes the agreement indicated might be considered good, 
but for purposes of stability calculations the accuracy is inadequate. 

The only calculations of the stability of these inlet profiles are those by 
Tatsumi, who computed the neutral stability loops for several values of x/aRa. 
His computed values of R,:*.,, ( = U&*/v, where 6” is the displacement thickness 
and U is the edge velocity) are shown in figure 4. In  Pfenninger’s test the measured 
location of transition was a t  x/aR,  = 0.017. Hence Tatsumi’s stability calcula- 
tions did not cover a sufficient portion of the inlet region to make possible cal- 
culations of wave amplification, even if he had computed complete stability 
maps-which he did not. 

4. A rough calculation of the neutral-stability and transition loci 
By now it should be obvious why Pfenninger’s tube-test was not included in the 

original correlation studies. Since both experimental and theoretical data 
needed for amplification studies of inlet flow were found wanting, a decision was 
made to apply ordinary methods of boundary-layer calculation to learn whether 
or not they might produce a useful result. The method chosen was exactly that 
used in the earlier studies, the Falkner-Skan piecewise method (Smith 1956 b), 
using Mangler’s transformation. The boundary-layer profiles resulting from the 
calculation are characterized by Hartree’s /I. Once the variation of /I along the 
axis of the tube is established, the stability or degree of instability of the flow can 
be established from Pretsch’s set of amplification rate curves (see Smith & 
Gamberoni 1956). 

The tube was treated as one of decreasing diameter, whose effective area 
decreased inversely as the core velocity supplied by the experiment. Figure 2 
shows the boundary-layer profiles calculated by the piecewise method. Both this 
figure and figure 1 show that the profiles have about the same level of accuracy at  
x/aR, = 0.03 as those computed by the more involved methods of calculation. 

Tatsumi calculated stability of the flow only for values of x/aRa < 0.004. In  
this range the piecewise method has very high accuracy and is clearly much more 
rapid than Tatsumi’s method. 

It was not known whether the location of the neutral-stability curve was very 
sensitive to the shape of the core-velocity distribution. To learn the answer, 
neutral stability for two-dimensional disturbances was calculated using two dif- 
ferent core-velocity distributions, Pfenninger’s and Nikuradse’s. The results are 
shown in figure 4. The two different distributions cause appreciable difference in 
the calculated stability of the flow. 

How does the stability calculated indirectly from the core-velocity-distribu- 
tion data agree with that calculated directly from experimental velocity profiles? 
Pfenninger measured carefully the velocity profiles at a station 39.64 ft. from the 
entrance. Because he tested a t  several velocities, the profiles cover a small range 
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of values of xlaRa. The neutral stability of four of these profiles covering the 
x/aR, range were calculated by means of Lin’s short formula. The necessary 
velocity and derivatives were obtained by fitting a 20-point least-squares cubic 
to  the boundary layer in the range 0 6 y/6* < 1. The results, plotted in figure 4, 
show that the direct calculation of stability from the experinlentally measured 
boundary-layer profiles produces considerably higher values of R,g,,,than those 
determined indirectly from the core-velocity distribution. Furthermore, beyond 
xlaR, of about 0.01 5 the stability of the experimental velocity profiles undergoes 
a rapid increase, while that determined from the core-velocity distribution begins 
to  decrease. 

4aR*  

FIGURE 4. Variation of neutral stability along the inlet length of a round tube according to 
several calculations. (a )  Experimental, direct computation from measured velocity profiles 
(Pfenninger 1951 a, Fig. 3) using Lin’s short formula. The flow is treated as if it were two- 
dimensional. (b) Pfenninger data (1951 b, Fig. 5,  CJl,o = 26.28 m/s) calculated by piecewise 
method (Smith 1956b) and Pretsch charts (Smith & Gamberoni 1956). (c )  Nikuradse data, 
calculated by piecewise method and Pretsch charts. (d )  Tatsumi. 

Reshotko’s measurements are in general agreement with these other data but 
his velocity traverses included too few points for the difficult problem of com- 
puting stability of an experimentally measured velocity profile. 

Tatsumi’s calculation is also shown in figure 4. It represents the stability of 
rotationally symmetric disturbances, however, whereas the other data represent 
the stability of two-dimensional disturbances. For its interest, the critical 
Reynolds number of two-dimensional Poiseuille flow is also included. This value 
has been obtained from the commonly accepted value of R = 5300, where R is 
basedon thehalf-width of the channel and thevelocity at  the centre of the channel. 
With respect to the other data this value is surprisingly low. 
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Figure 5 shows the point of transition calculated by the es method, the 
neutral-stability locus according to Tatsumi, and the locus according to the 
present method of calculation. For purposes of calculating transition to the very 
end of the inlet length, Nikuradse’s core-velocity distribution was used. Also to 
be men on the figure is the experimentally measured transition point supplied by 
Pfenninger. The calculated point nearby is computed in the same way as the full 
curve based on Nikuradse’s data, except that it uses the Pfenninger core-velocity 
distribution existing during the test when the transition point was observed. The 
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FIGURE 5. Transition and neutral-stability loci according to several calculations. Also 
shown is Pfenninger’s transition measurement. (a) Calculated, using data from Pfenninger 
(1961b) Ul,,, = 26.28 m/s. ( b )  Experimental Pfenninger (1951b) Ulvo = 26.28 ms. (c)  es 
transition curve, Nikuradse core velocity. (d )  Neutral curve, Nikuradse core velocity. 
(e) End of inlet length. ( f )  Neutral curve, Tatsumi. 

most interesting feature of this figure is the close agreement of the predicted and 
the experimental transition point. Moreover, the small difference between the 
location of the circled Pfenninger point and the Nikuradse locus indicates that the 
differences in core-velocity distribution do not cause significant changes in the 
calculated location of transition, even though the differences in neutral-stability 
locus were appreciable (figure 4). Since theory and Pfenninger’s test are in good 
agreement, and since boundary-layer calculations gain in accuracy near the 
entrance, it is probable that the curve of R, for transition versus xlaRa is fairly 
accurate for values of xlaR, less than about 0.02. At higher values of x/aR,, 
the predicted transition curve should rapidly ,develop major errors. Clearly, 
this portion of the curve is very conservative, as can be realized by the fol- 
lowing consideration. Farther forward in the inlet, the flow is accelerating, and 
as a result it  is a flow having positive values of Hartree’s p (or Pohlhausen’s A). 
Downstream of the inlet length, where the flow has become parabolic, the 
velocity gradient becomes zero. Obviously, boundary-layer calculations would 
predict an ordinary Blasius boundary layer of low stability for this region. But 
from the correct calculations we know that the flow in this region has infinite 
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stability, at least for axially symmetric disturbances. In  spite of the ultra- 
conservative nature of the calculations for the larger values of x/aR,, the curve 
shows that at R, = 7-1  x lo3 transition will occur at the very end of the inlet 
length. 

5. Miscellaneous remarks on the transition phenomenon - 
If all disturbances are damped in the parabolic region? and if the flow succeeds 

in reaching this region in the laminar state, it  may remain laminar forever. 
Conversely, if natural transition does occur in the tube, it will occur in the inlet 
portion. In  view of the very conservative nature of the calculations for 
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FIQURE 6. General nature of the transition locus in the x/aR, v8 R,  plane. (a) Transition 
locus (this part can be calculated with acceptable accuracy). ( b )  More nearly correct 
result. (c )  Parabolic flow. (d) Conservative boundary-layer calculation. 

xlaR, > 0.02, it  is clear from the figure that laminar flow can exist to the end of 
the inlet length, at least to  R, = 7.1 x lo3, that is, to Rd = 14-2 x 103. Experiment 
has shown that the flow can remain fully laminar to values of Rd of about 30,000. 

The more nearly correct relations between R, and xlaR, for transition should 
be qualitatively as sketched in figure 6. Beyond the inlet, R, for transition 
becomes constant, and R, for transition becomes infinite. 

In the R,vs axlv plane the transition locus should look somewhat like the 
curve in figure 7. Although this figure is principally presented for schematic 
purposes, it  is actually calculated from the upper line of figure 6, and in fact the 
curve to the right of R, = 40,000 represents the same values as those shown in 
figure 5 ,  that is, the portion to the right of Pfenninger's point is the theoretical e9 

prediction. Pfenninger's measurement has been added for orientation purposes. 
Clearly, if R, is very great, the flow begins as ordinary Blasius flow, because the 

-f This is a controversial assumption, because the flow has been proved stable only for 
rotationally symmetric disturbances. Little is known of the stability with respect to other 
types of disturbance. 
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boundary-layer thickness is so negligible compared to the pipe radius that the 
core velocity is constant initially. Basically the transition locus varies in a hyper- 
bolic fashion and approaches a vertical asymptote, which is RaCrit. 

The above facts and considerations indicate the following sequence of events. 
The flow begins as a very thin boundary layer. At first it  is so thin that it is stable 
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0, Pfenninger’s measurement. 
FIGURE 7. Nature of the transition locus in the R, 218 €2, plane. 

to small disturbances. But shortly, as it grows, it becomes unstable and dis- 
turbances begin to amplify. If the flow is such that the tube Reynolds number is 
greater than the critical value, the disturbances grow until they undergo an 
apparent amplification ratio of about e9, at which point transition occurs. If the 
tube Reynolds number is reduced, the point of transition moves farther down- 
stream, either in x measure or x/aR, measure. Finally, a Reynolds number will be 
reached at  which an amplification ratio of magnitude e9 is just attained. Below 
the value e9, waves will grow for a while, but then they will enter the more stable 
flow farther downstream and will die out. An experiment in which Reynolds 
number is varied by reducing the velocity in a particular tube would show the 
transition point moving downstream slowly a t  first. But when sufficient dis- 
turbance amplification could no longer be reached, the point of demarcation 
between the laminar and turbulent regions would wash downstream to the very 
end of the tube. The value of R, for transition would then have a discontinuity in 
its variation with R,. 

Experiments seem to indicate a discontinuity, but they have not been suffi- 
ciently thorough to settle the question. Whether the discontinuity could truly 
exist cannot be answered by theory because damping rates are known to be 
a function not only of disturbance amplitude but also of wave length. Distur- 
bances other than two-dimensional or rotationally symmetric ones would further 
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modify the picture, and the process just described is by no means the only one by 
which turbulent flow can develop. 

The old question of whether or not the inlet portions of the flow may be 
neglected can be made to appear absurd by a little consideration. Consider flow 
in a tube of 2in. diameter (the same as Pfenninger’s). The inlet length ends at  
x/uR, of about 0.26, say 0.24 to make the arithmetic easier. Then for a 2 in. tube, 
the end of the inlet is at x = O.24uRa or x = (0.24 + 12) R, = 0.02 R,. I f  R, = lo4, 
x = 2OOft. The first 200ft. of any laminar flow can hardly be ignored! 

6. The eg correlation plot 
In Pfenninger’s test the turbulence was very low and the tube was very smooth. 

Thus his measurement qualifies for inclusion in the correlation plot of-Smith & 
Gamberoni (1956). This plot compares measured transition points with ones 
calculated by assuming transition occurs when Tollmien-Schlichting waves are 
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( R,)tr calculated for pi dt = 9 s 
FIGURE 8. Transition data, correlation between measurement and prediction by stability 
theory. Data from Smith & Gamberoni (1956) except for Pfenninger’s measurement. 

Standard deviation : Type of body No. of points yo deviation 
2-dimensional 31 11.5 
3-dimensional 10 17.2 

Note: (1)  Solid points represent flight-test data. (2) Circled points represent bodies of 
revolution. (3) Open points represent wind-tunnel data. (R,)tr = (Utrztr)/V. 
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amplified by a factor of e9. The result is shown in figure 8. The numerical values 
are (Rx)tr = 40.4 x lo6, with U,, = 35.17m/sec, z,, = 18m, Y = 15.65 x 
ma/sec. The Reynolds number (R&, based on momentum thickness, is approxi- 
mately 3600. The remaining points can be identified by reference to the earlier 
work. Considering the rough method of calculation, the agreement between 
measurement and prediction is, to say the least, a remarkable coincidence. Here 
R, is based on the local core velocity V,, not D. The additional point increases 
the range of validity of the correlation appreciably, from a transition value of 
R, of about 17 million to over 40 million. The correlation now covers a range of 
Reynolds numbers R, for transition from about 570,000 to slightly over 40 million. 
Both extremes are axially symmetric flow, the lower being flow about a sphere, 
the upper being flow inside a round tube. Standard deviations for the sets of 
points are included. The values are not consistent with those shown in the earlier 
work, because there was an error in the original calculations. 

7. Conclusions 
1. Existing experimental data for the flow in a round tube are inadequate and 

unsatisfactory. 
2. Existing theoretical solutions for the velocity distribution in the inlet of 

a round tube are of insufficient accuracy, at least for the requirements of stability 
theory. 

3. Provided the boundary-layer thickness is less than about half the tube 
radius, conventional boundary-layer calculations can predict velocity profiles 
along the inlet of a round tube with about the same accuracy as the more elaborate 
methods. 

4. The existence of turbulent flow in a smooth round tube can be explained by 
consideration of the inlet region. Transition can readily occur in this portion 
because the velocity profiles have a finite stability limit. 

5. Apparently the e9 method will predict the location of transition in the inlet 
length of a smooth round tube throughout a significant fraction of its length. 

6. At transition, the apparent amplification factor for Tollmien-Schlichting 
waves is found to be a constant over a very large range of Reynolds numbers and 
variety of flows, from R, = 570,000 to over 40 million. The constant factor is 
about e9, regardless of body shape. 
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